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Dynamics of lattice vibrations for one-dimensional
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harmonic interaction
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Katholieke Universiteit Nijmegen, Theoretische Fysica, Postbus 9010, 6500 GL Nijmegen,
the Netherlands

Received 30 January 1997

Abstract. We introduce a model that generalizes the Frenkel–Kontorova model and describes
a one-dimensional (1D) composite system made of two subsystems which are treated on an
equal footing. The gap structure of the phonon energy spectrum and the character of lattice
vibration are studied. We show that the phason mode may be pinned or not depending on the
form of the intersubsystem potential. For a weak intersubsystem interaction the structure of the
phonon energy spectrum is universal and may be revealed by a gnomonic projection ofZ3 onto
the plane. For a short-range harmonic interaction there are similarities between this model of
composite and 1D quasicrystals.

1. Introduction

The acceptance of the name ‘composite’ in materials science is large, applying to materials
whose structure contains at least two different subsystems. The results of this paper
apply to composite systems containing crystalline subsystems which differ by the period
along one or several crystalline directions. In this sense the name ‘composite’ applies to
misfit layer, chimney-ladder, intergrowth, and Vernier structures (see Yamamoto 1993 for a
comprehensive presentation). The crystallographic structure of these compounds has been
extensively investigated and sometimes requires a four-dimensional (4D) or five-dimensional
(5D) superspace description, as the number of rationally independent periods is greater
than 3.

The ratio of the periods of the two subsystems along different directions in a composite
may be rational or irrational. We speak then of commensurate and incommensurate
composites, respectively. The incommensurate composites belong to the larger class of
incommensurate crystals. The incommensurability of the composites comes neither from
the modulation of a basic three-dimensional (3D) crystalline structure (as for the modulated
incommensurate crystals) nor from the quasiperiodic repetition of some structural units (as
for the quasicrystals and polytypes), but from the existence of several interpenetrating,
mutually incommensurate crystalline structures.

The long wavelength lattice dynamics of composites has been studied in the continuous
approximation by Emery and Axe (1978), Axe and Bak (1982), Finger and Rice (1983)
for the intergrowth compound Hg3−δAsF6. Semidiscrete models of composites have been
proposed by Theodorou and Rice (1978) and Ishii (1983). In these models the treatment of
the intersubsystems interaction term does not fully emphasize the discreteness effects.
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4200 O Radulescu and T Janssen

Recently interest in composites has grown. In many of these compounds there is no
clear host lattice, and one has to treat the subsystems on an equal footing. Then the picture
of a (rigid or deformable) substrate is no longer valid.

We propose here a rigorous model of a discrete one-dimensional-(1D) composite,
composed of two flexible atomic chains with different natural periods. This model has two
subsystems which play the same role. The main problem is that of the character of the lattice
vibrations and the gap structure in such a symmetric case. The incommensurate structure
is obtained as the limit of commensurate structures with increasing period. The intrachain
and interchain interaction is considered to be described as a sum of pair potentials. The
general model is introduced in section 2. In section 3 we consider the interchain interaction
to be harmonic and short range in order to compute the phonon spectrum of the double
chain. The problem discussed here is the gap structure of the spectrum. For the first time
the hierarchical nature of the gap structure is shown in the case of a double chain, extending
previous results that are valid for simple Frenkel–Kontorova chains. Section 4 discusses
the possibility of the existence of a sliding mode and proposes analytical expressions for
the speed of sound.

2. General settings for the dynamics of a double chain with pair potential interaction
in the harmonic approximation

Let x(1)n andx(2)m be the positions of the atoms on the first chain and on the second chain,
respectively. Let us suppose that the potential energy of the double chain, is a sum of pair
potentials

V({x(1)n ; x(2)m }) =
∑
n<n′
V (1,1)n,n′ (x

(1)
n − x(1)n′ )+

∑
m<m′
V (2,2)m,m′ (x

(2)
m − x(2)m′ )+

∑
V (1,2)n,m (x

(1)
n − x(2)m ).

(1)

In the harmonic approximation, and supposing that inside each chain only first-neighbour
atoms interact, the above expression becomes:

V({u(1)n ; u(2)m }) =
k(1)

2

∑
[u(1)n − u(1)n−1]2+ k

(2)

2

∑
[u(2)m − u(2)m−1]2

+
∑

(n,m)∈B

k(1,2)n,m

2
[u(1)n − u(2)m ]2 (2)

whereu(1)n andu(2)m are the displacements of the atoms with respect to their static equilibrium
positions, and the elastic constants are second derivatives of the pair potentials calculated
at distances between atoms at static equilibrium.

SetB contains the set of pairs of indices of atoms in interaction (interchain bonds).
If the masses of the atoms on the two chains aremi, i = 1, 2, then the vibration

frequencies are the square roots of the eigenvalues of the force operatorF :

F = F0+ F ′ (3)

where, using reduced coordinatesy(i)n =
√
miu

(i)
n ,

F0(y
(1)
n , y

(2)
m ) := (ω2

1[2y(1)n − y(1)n+1− y(1)n−1], ω2
2[2y(2)m − y(2)m+1− y(2)m−1]) (4)

F ′(y(1)n , y
(2)
m ) :=

(
1

m1

(∑
r∈Bn

k(1,2)n,r

)
y(1)n −

1√
m1m2

∑
r∈Bn

k(1,2)n,r y
(2)
r ,

1

m2

(∑
s∈Bm

k(1,2)s,m

)
y(2)m

− 1√
m1m2

∑
s∈Bm

k(1,2)s,m y(1)s

)
(5)
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with Bn := {r|(n, r) ∈ B} andBm := {s|(s,m) ∈ B}, ω2
i := k(i)

mi
, i = 1, 2.

The harmonic composite is called(p, q) periodic if B = (p, q)+ B, k(1,2)n+p,m+q = k(1,2)n,m .
In this case,

Bn+p = Bn + q
Bm+q = Bm + p
B =

⋃
n∈Z
{Bp,q0 + (np, nq)}

(6)

whereBp,q0 is the primitive unit cell of the(p, q) periodic setB.
Let Tp,q be the(p, q) translation operator:

Tp,q(y
(1)
n , y

(2)
m ) := (y(1)n+p, y(2)m+q). (7)

For a (p, q) periodic composite, the(p, q) translation operator commutes with the force
operator:

[Tp,q,F ] = 0. (8)

Therefore, the eigenvalue problem for the infinite-dimensional operatorF is reduced using
Bloch theory (van Mouche 1988) to the eigenvalue problem for a family of(p + q)-
dimensional operators (dynamic matrix)Fp,qθ := F |Ker(Tp,q−eiθ Id), the values ofθ being
restricted to the Brillouin zoneθ ∈ (−π, π ]. Precisely, one has:

Spec(F ) =
⋃

θ∈(−π,π ]

SpecFp,qθ . (9)

The same reduction applied toF0 andF ′ yields Fp,qθ = F0
p,q(θ)+ F′p,q(θ)

F0
p,q(θ) =

 ω2
1Dp O

O ω2
2Dq

 (10)

where Dp is the dynamical matrix of a single harmonic chain inp-periodic folded zone
representation

Dp =


2 −1 0 p. . . 0 −e−iθ

−1 2 −1 . . . 0 0
...

...

−eiθ 0 0 . . . −1 2

 (11)

whereF0
p,q(θ) is the dynamical matrix of the double chain without interchain interaction.

It hasp eigenvectors representing waves propagating in the first chain andq eigenvectors
representing waves propagating in the second chain.

In a suitably chosen basis, the above eigenvectors read:

v
(1)
k (θ) =

1√
p
(1, zk, z

2
k , . . . , z

p−1
k , 0, . . . ,0)

zk = exp

[
i

p
(θ + 2πk)

]
k = 0, . . . , p − 1

v
(2)
l (θ) =

1√
q
(0, . . . ,0, 1, wl, w

2
l , . . . , w

q−1
l )

wl = exp

[
i

q
(θ + 2πl)

]
l = 0, . . . , q − 1

(12)
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and the corresponding eigenvalues are:

λ
(1)
k (θ) = 4ω2

1 sin2 1

2

θ + 2πk

p

λ
(2)
l (θ) = 4ω2

2 sin2 1

2

θ + 2πl

q
.

(13)

For some values ofk, l, θ , some of the above eigenvalues become doubly degenerate.
One has four situations:

(1) intercrossing (double-chain modes), which is

λ
(1)
k (θ) = λ(2)l (θ) (14)

for θ inside the Brillouin zone, 0< |θ | < π .
(2) Acoustic degeneracy, coming from the translation symmetry of both chains:

λ
(1)
0 (0) = λ(2)0 (0) = 0. (15)

(3) Centre of zone degeneracy (in single-chain modes):

λ
(1)
k (0) = λ(1)k′ (0) or λ

(2)
l (0) = λ(2)l′ (0). (16)

(4) Border of zone degeneracy (in single-chain modes only):

λ
(1)
k (±π) = λ(1)k′ (±π) or λ

(2)
l (±π) = λ(2)l′ (±π). (17)

The introduction of the interaction termF′p,q(θ) raises the degeneracy and produces
gaps in the spectrum ofF . The situation is more complex for a double chain than it is
in the case of a simple chain under a periodic perturbation (de Lange and Janssen 1981),
because of the intercrossing. For a simple chain any degeneracy is of the type (3) or (4),
and any degeneracy raise produces a gap. It is not the case of the double chain, where,
for small perturbations, gaps appear only at the intercrossing, and only if the derivatives
dλ(1)k (θ)/dθ and dλ(2)l (θ)/dθ have opposite signs (see figure 1). Raising the degeneracy in
situations (2)–(4) produces only a van Hove singularity edge in the density of states. For
low values of the coupling constantk(1,2), modes between two such singularity edges are
waves propagating in only one chain, and being extinct in the other chain. Let us call the
region between two singularity edges ‘single gap’. Modes propagating in the second chain
are pushed out of the single gap by the interchain interaction, and therefore the density of
states is about two times lower inside than outside the single gap. For larger values of
the coupling constant, nonlinear effects destroy this simple image. Let us define a relative
participation ratio as follows

l(2) := p

q

∑q

i=1(u
(2)
i )

2∑p

i=1(u
(1)
i )

2
. (18)

In figure 1(c) we represent the contribution to the density of states of modes for which
the relative participation ratiol(2) of atoms in the second chain is greater than 0.1. For
small k(1,2) the atoms of the second chain do not participate to modes inside single gaps of
this chain.

Both true (double) gap edges and single gap edges are analytic functions of the
interaction parameterk(1,2). It may happen that for high values ofk(1,2), a single gap of one
chain superpose to a single gap of the second chain and a true (double) gap (containing no
modes) arises.
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(a) (b)
(c)

Figure 1. (a) Folded phonon branches of a(5, 3) periodic composite before and after switching
on the interchain interaction; true gaps open at the intercrossingsD1,D2,D3, and single gaps
of the second chain open atS1, S2. (b) Density of states as a function ofk(1,2)/k(1) for a (5, 3)
periodic composite. DOS is per atom and for an energy unit 4ω2

1. (c) Density of states with
relative participation ratiol(2) > 0.1; notice that there are no such states inside single gaps at
S1, S2. The results presented here were obtained numerically, using LINPACK procedures. We
have chosenm1 = m2 andk(1) = k(2).
(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

3. The short-range, harmonic interaction composite

3.1. Presentation of the model

Let us illustrate the above general remarks, for setsBp,q0 (primitive unit cell ofB) of pairs
of interacting atoms defined as follows

Bp1+p2,q1+q2
0 = Bp1,q1

0

⋃
{(p1, q1)+ Bp2,q2

0 }
B1,1

0 = {(1, 1)}
B2,1

0 = {(1, 1), (2, 1)}
(19)

where it is supposed thatp1/q1 < p2/q2. Starting with the(1, 1) and (2, 1) periodic
composites, one may iterate (19) and obtain all intermediate periodic structures ((p, q)

periodic composites such that 16 p/q 6 2). The set of rational numbersp/q
increases at each step of the construction as follows. Between successive rational numbers
p1/q1 6 p2/q2 which are available at stepn, an intermediate rational number is introduced
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at stepn+1(p1

q1
6 p1+p2

q1+q2
6 p2

q2
). The above recursion is the well known mediant construction

and at thenth step one gets the Farey series of ordern (see Hua 1982) translated by 1. In
order to extend the construction from the interval [1, 2] to all positive rational numbers, one
has to defineBp,10 for p ∈ N, and then apply (19) inside each interval [p, p + 1].

Let us also consider that the interchain elastic constants are all the same(k(1,2)n,m = k(1,2)).
The physical significance of the above choice of setsBp,q0 is as follows. Interchain

interaction is considered to be short range, each atom on the chain of lower period (let
us consider it to be chain 1, and consequentlyp > q) interacts with only one atom on
the other chain (chain 2), the one which is closest to it (thus]Bn = 1). In the case of
equal distances, the leftmost atom is chosen. This particular choice of interchain interaction
coincides with the one used by Aubry (1982) for the exactly soluble model of a harmonic
chain on a non-deformable substrate with parabolic potential. Here we replace the substrate
by a deformable second chain.

This short-range, harmonic interaction composite is in many ways similar to a
quasicrystal. First, notice that harmonicity of the interaction implies that the force operator
depends only on the connectivity of the atoms (setB). We suppose that the setB does
not change when the interchain interaction is switched on. The flexible chains are mutually
deformed but the atoms keep their first neighbours (this was rigorously shown by Aubry
for the case of the simple chain). The double chain with its connections (springs) has
the topology of a structure showing two structural units (figure 2(a)), and which can be
produced either by substitution (figure 2(b)), or by hierarchical aggregation (figure 2(c)).
These structural units are only a useful construction for this short-range interaction model,
and one should not look for them in the real world structure.

The substitution rule illustrated in figure 2(c) produces a unique quasiperiodic composite
structure, for which the relative frequency of the two structural units and the ratio of the
periods of the two chains is the golden mean (τ = 1+√5

2 ). The hierarchical aggregation is the
geometrical representation of relation (19). A hierarchy of periodic structures, whose unit
cells have increasing periods and complexity, can be constructed by this method, starting
with two given simple basic structures. The relative frequency of the structural units and
the ratio of the periods of the two chains can take any rational values, intermediate between
the values corresponding to the two basic structures. Also any intermediate quasiperiodic
structure can be approximated with arbitrary precision by the periodic structures obtained by
hierarchical aggregation. Let us notice the difference between substitution and hierarchical
aggregation. While the second method produces a tree of periodic structures, the first
method produces only a path of structures inside this tree, leading to a unique quasiperiodic
structure, which is the fixed point of the substitution rules. Inside the hierarchical tree, there
is an infinite number of such paths, all leading to different quasiperiodic structures which
are invariant with respect to different substitution rules of the two structural units.

Finally, we notice that the setB is a subset ofZ2 contained inside a band, and this
property is exactly the same as the one leading to the cut and projection method for
generating quasicrystals (Katz and Duneau 1986). If the band is parallel to(p, q) then
the composite is(p, q) periodic, if the slope of the band is irrational then the composite
is incommensurate. Modifying the width of the band one may modify the range of the
interaction (a broader band corresponds to a longer-range interaction).

The part of the dynamical matrix coming from the interchain interaction is:

F′p,q(θ) = k1,2

 1
m1
41
p

1√
m1m2

Jp,q

1√
m1m2

J†p,q 1
m2
42
q

 . (20)
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(a)

(b)

(c)

Figure 2. (a) Connectivity of a harmonic short-range interaction composite. Larger and larger
unit cells may be obtained by (b) substitution and (c) hierarchical aggregation.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

41
p is a p-dimensional diagonal matrix, each diagonal element being41

p(n, n) := ]Bn
and42

q is aq-dimensional diagonal matrix, whose diagonal elements are42
q(m,m) := ]Bm.

For choice (19) one has:

Tr(41
p) = Tr(42

q) = p (21)
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the trace being the number of interchain bonds per unit cell.
The (p, q) matricesJp,q are obtained by combining(p1, q1) and (p2, q2) such that

p1/q1 < p2/q2:

Jp1+p2,q1+q2 =
 Jp1,q1 O

O Jp2,q2


J1,1 = [−1] J2,1 =

[−1
−1

]
.

(22)

3.2. Hierarchy of gaps in the phonon spectra for even maximum phonon frequency in the
two chains (ω1 = ω2)

A formal difficulty in applying perturbation theory to the intercrossing situation comes from
the fact that the two values ofθ corresponding at fixedk1,2, to the minimum and maximum
values of the gaps edges are not equal, and they differ from the intercross value ofθ . One
is forced to apply perturbation theory with variableθ . Precisely, this means solving the
eigenvalue problem for the two-dimensional 2D operatorFk,l = F |Vk,l(θ), Vk,l(θ) being
the space generated by the two intercrossing eigenvectorsv

(1)
k (θ) andv(2)l (θ). This allows

us to find the positionsλrp,q (r = 1, . . . , bp+q−1
2 c) of the gap centres and the gap widths

δλrp,q , in first order ofk(1,2). Equation (14) has simple solutions only in the caseω1 = ω2,
a condition which we suppose to be fulfilled throughout this section. Then, one has (see
appendix A):

λrp,q = 4ω2
1 sin2 π

p + q r +
p

p + q k
1,2

(
1

m1
+ 1

m2

)
(23)

δλrp,q =
k1,2

√
m1m2

2

p + q
p2+ q2

pq

∣∣∣∣Pp,q [exp
2π i

p + q r
]∣∣∣∣ (24)

Pp1+p2,q1+q2(z) = Pp1,q1(z)+ zp1+q1Pp2,q2(z)
p1

q1
<
p2

q2

P1,1 = 1 P2,1 = 1+ z.
(25)

The gap widths are exponentially going to zero and their number exponentially increases
with n (the order of the approximation), whenp/q converges to some irrational value. This
is the normal behaviour of approximants of incommensurate structures, of longer and longer
periods. The spectrum of the incommensurate limit structure is a Cantor set with infinitely
many gaps. For a small perturbation the gap widths are linear ink(1,2), but the perturbation
theory applies only for low values ofp, q or k(1,2), when the distance between unperturbed
levels is much larger than the corresponding matrix elements of the perturbation. For high
values ofk(1,2), nonlinear effects appear and the aspect of the spectrum changes. We have
already seen that whenk(1,2) is increased new true gaps may open when single chain gaps
superpose, also other gaps may close.

Nevertheless, the ‘0+’ phonon spectrum (infinitesimal small perturbation) for different
values of the parameterα = p/q, shows remarkable universal features (figure 3), which
follow from arithmetic properties of the latticeZ3. Each gap can be indexed by three
integers(p, q, r), and can be embedded inZ3. The first two integers give the order of the
commensurate structure (the ratio of the periods of the two chains). The third integer gives
the energetic position of the gap for fixedα. The higherr is, the higher the energy is.
Conversely, to each ray(p, q, r) in Z3, satisfying (p+q−1

2r > 1), there is a gap in the phonon
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Figure 3. Complementary of the phonon spectra (positions and widths of gaps) for the harmonic
short-range interaction composite.

spectrum of the(p, q) periodic composite. The positions of the gaps in the plotω2(p/q)

can be obtained from the vertices ofZ3 via a projectivity, followed by two continuous
transformations:

(p, q, r) −→
(
p

q
,
r

q

)
−→

(
p

q
,

r

p + q
)
−→

(
p

q
, λrp,q

)
. (26)

The above projectivity is the well known gnomonic projection (also called the central
projection and used for maps in cartography or for models of the elliptic plane in non-
euclidian geometry), and by an elementary theorem of projective geometry, transforms
planes into lines and lines into points, as shown in figure 4. This does not say anything
about the gap widths, but the interesting affine-projective structure of the gap positions fits
nicely to the following generalization of the mediant construction. Two gaps(p1, q1, r1)

and(p2, q2, r2) combine to give a third gap(p1+ p2, q1+ q2, r1+ r2), whose width is not
very different from the widths of the previous two gaps. The lines occurring in figure 3,
along which the gap width seems to depend continuously onα, correspond to 2D sublattices
of Z3 passing through the origin and being generated by(p1, q1, r1) and(p2, q2, r2). These
lines can be straightened by a continuous deformation, giving the lines in figure 4. Along
such a line the gap widths stay close to a differentiable functionψ(α), going from zero to
a maximum value. This maximum value is monotonically non-increasing with the areaS2

of the primitive unit cell of the corresponding 2D sublattice ofZ3. Thus, heavy curves in
figure 3 correspond to dense 2D sublattices ofZ3. The fluctuations with respect toψ(α)
are important only for small values ofq, for big denominatorsq, these fluctuations are
negligible. For fixedp/q, the fluctuations are monotonically increasing with the value of
S2, and are therefore small for dense 2D sublattices ofZ3 (heavy curves are smoother). A
precise statement of these properties, together with detailed proofs will be given elsewhere.
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Figure 4. MappingZ3 onto the plane by gnomonic projection, transforms planes into lines and
lines into points.

3.3. Discontinuity edges in the DOS for arbitraryω1, ω2 and gap hierarchy forω1
ω2
→∞

Let us now discuss the situations described by relations (16) and (17). Perturbation theory
is simpler in this case, as it can be applied at fixedθ (θ = 0,±π ). Straightforward
calculations, along the lines of appendix A, lead to the following results.

(1) The degeneraciesλ(1)k (0) = λ
(1)
k′ (0) and λ(1)k (±π) = λ

(1)
k′ (±π) remain also in first

order ofk(1,2).
(2) Single-chain gaps open in the spectrum of the second chain, linearly ink(1,2). The

positions of these single-chain gaps are:

θ = 0 λlp,q(0) = 4ω2
2 sin2 lπ

q
+ p
q

k(1,2)

m2

l = 1, . . . ,

⌊
q − 1

2

⌋
θ = π λlp,q(π) = 4ω2

2 sin2 π

q

(
l + 1

2

)
+ p
q

k(1,2)

m2

l = 1, . . . ,
⌊q

2

⌋
(27)

and their widths are:

θ = 0 δλlp,q(0) =
2k(1,2)

qm2

∣∣∣∣Qp,q

[
exp

(
2π il

q

)]∣∣∣∣
θ = πδλlp,q(π) =

2k(1,2)

qm2

∣∣∣∣Qp,q

[
exp

(
π i(2l + 1)

q

)]∣∣∣∣ (28)
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Figure 5. Complementary of the phonon spectra for the Aubry’s model (flexible chain on a
rigid substrate with parabolic potential).

where the polynomialsQp,q satisfy:

Qp1+p2,q1+q2(w) = Qp1,q1(w)+ w2q1Qp2,q2(w)

Q1,1(w) = 1 Q2,1(w) = 2
(29)

for p1/q1 < p2/q2.
Equations (27) and (28) give the positions and the widths of the single chain gaps in

the ‘0+’ spectrum of the double chain, but ifω1/ω2 → ∞ the first chain becomes rigid
and the above two equations give the positions and widths of the ‘0+’ spectrum of the
Aubry’s model (flexible chain on a rigid substrate). The same affine-projective structure
as the one discussed in the preceding section also stands in this case, the gap positions
obtained fromZ3 by the same projectivity (gnomonic projection), followed by a different
continuous transformation. The heavy curves in figure 5 correspond to the same dense 2D
sublattices ofZ3 as the heavy curves in figure 3.

4. Sliding mode (phason) and speed of sound

The last type of degeneracy to be discussed is the acoustic degeneracy (15). Before
introducing the interchain interaction, there are two zero-energy acoustic phonons of the
two chains, each one implying rigid displacement of one chain, while the other chain is
fixed:

v
(1)
0 (0) ∼ (1, . . . ,1, 0, . . . ,0)

v
(2)
0 (0) ∼ (0, . . . ,0, 1, . . . ,1).

(30)

Let us switch on the interchain interaction in its most general form (2) and solve the
secular equation in the 2D space formed by the modes (30). BecauseF ′ still has translational
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symmetry, there will be a zero-energy acoustic mode:

v′acc∼ (
√
m1, . . . ,

√
m1,
√
m2, . . . ,

√
m2)

λ′acc= 0
(31)

and ak = 0 phason mode (sliding mode):

v′ph ∼
(

1

p
√
m1
, . . . ,

1

p
√
m1
,− 1

q
√
m2
, . . . ,− 1

q
√
m2

)
λ′ph = k(1,2)eff

[(
1+ q

p

)
1

m1
+
(

1+ p
q

)
1

m2

]
k
(1,2)
eff =

1

p + q
∑

i∈Z,j=1,...,q

k
(1,2)
i,j =

1

p + q
∑

j∈Z,i=1,...,p

k
(1,2)
i,j .

(32)

The acoustic phonon corresponds to a global rigid displacement of the double chain,
while the phason corresponds to relative rigid displacements in opposite directions of the
two chains, such that the centre of mass of the double chain remains fixed. Let us recall
that the above eigenvectors are in reduced coordinates. In order to obtain the displacements
one has to divide the firstp coordinates by

√
m1 and the nextq coordinates by

√
m2.

For the short-range interaction composite discussed in section 3.1,k
(1,2)
eff = k(1,2) p

p+q and
the phonon gap is finite, even in the incommensurate case. This generalizes the result of
Aubry, which shows that the phason is pinned in the case of a flexible chain on a substrate
represented by a parabolic potential. It is clear that the only way of depinning it is to allow
non-harmonicity of the interchain interaction, i.e. to have an interchain pair potential with
both concave and convex parts. In this case, the series definingk

(1,2)
eff becomes alternate

and may eventually converge to zero, as for the Frenkel–Kontorova model with sinusoidal
substrate potential.

Let us now associate a speed of sound to both phonon and phason mode, as follows

c = pa
√

1

2

d2ω2(θ)

dθ2
(33)

wherepa is the period of the commensurate double chain. LettingPp,q = p andk = l = 0
in (A.9), one obtains in first order of the perturbation:

c =
√
c2

1 + c2
2

2

√
1± c

2
1 − c2

2

c2
1 + c2

2

qm2− pm1

qm2+ pm1
=
√
c2

1 + c2
2

2

√
1± c

2
1 − c2

2

c2
1 + c2

2

ρ2− ρ1

ρ2+ ρ1
(34)

where c1 = ω1a,c2 = ω2b are the speeds of sound andρ1, ρ2 are the densities of the
decoupled single chains. The positive sign corresponds to the phason, while the negative
sign corresponds to the acoustical phonon. If the phason is depinned, then this mode will be
detected as a supplementary sound whose speed will be greater or smaller than the phonon
speed of sound depending on the sign of(c2

1 − c2
2)(ρ2− ρ1).

Finally, we notice that considering the phason displacements to be rigid means that we
neglect the intermodulation. If after switching on the interchain interaction the atoms on
the two chains move from their regularly distributed positions to the following modulated
positions:

xo(1)n = na +11+ g(1)(na +11)

xo(2)m = mb +12+ g(2)(nb +12)
(35)
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where the phase shifts were chosen to satisfy11
12
= − a

b
m2
m1

, and the modulation (or envelope)
functions gi are differentiable, then the following atomic displacements correspond to a
zero-energy phason mode (see appendix B):

u(1)n ∼
a

m1
[1+ g′(1)(na +11)]

u(2)m ∼
b

m2
[1+ g′(2)(mb +12)].

(36)

This is consistent with the fact that a pinned phason is always accompanied by a non-
differentiable modulation function.

5. Conclusions

Using a double-chain model, we discussed the dynamics of lattice vibrations of a composite
structure with two equivalent subsystems. Our results fill a gap in the existing literature
on the dynamics of incommensurate structures, where the case of composites is treated
only in the hydrodynamic approximation, or using not generally justified descriptions of the
interchain interaction.

We show that there are some universal features in the phonon dynamics of composites,
common to all incommensurate structures. The energy spectrum of lattice vibrations is a
Cantor set for incommensurate composites, and the distribution of gaps for commensurate
composites of different periods follows hierarchical rules. Projective geometry is a useful
tool for understanding this aspect. The phason mode may or may not be pinned, depending
on the form of the interchain potential, as in the case of modulated incommensurate
structures.

There are also some specific features that are present in the dynamics of composites. For
commensurate double chains the gaps open inside the Brillouin zone, at the intercrossings
of phonon branches corresponding to separate chains, when the interchain interaction is
switched on. The amplitudon mode is absent, and the phason occurs at the centre of
the Brillouin zone. This final property is related to the fact that incommensurability is
intrinsic for composites, and it does not appear gradually via a soft mode, as in the case of
modulated incommensurate structures. Other specific features of composites are related to
static properties of the fundamental states and will be discussed elsewhere.

Although simple, this model may explain dynamical properties of inclusion compounds
of the type alcane/urea. The expressions relating the phonon and phason speed of sound
to the relative density and rigidity of the subsystems may be directly used for analysing
existing available data for light scattering on these compounds (Schmickeret al 1995).
These experiments seem to prove the existence of an unpinned phason mode having low
damping. More complex systems such as Hg3−δAsF6 impose extensions of the model. We
are presently considering more complicated situations, also involving realistic interaction
potentials. The study of eigenvectors and eigenvalues of the dynamical matrix allows the
computation of the dynamical structure factor that will be compared with experimental
results of neutron diffusion.
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Appendix A. Positions and widths of intercrossing gaps forω1 = ω2

If ω1 = ω2, then the intercross conditions (equations (14) and (13)) lead to

±1

2

θ + 2πk

p
= 1

2

θ + 2πl

q
− sπ s ∈ Z. (A.1)

It is only the minus sign which is compatible with the condition dλ
(1)
k /dθdλ(2)l /dθ < 0,

necessary for gap opening.
Therefore, the positions of gap openings are

θ
p,q

r ′ =
2πr ′

p + q (A.2)

with r ′ ∈ Z,−bp + q − 1/2c 6 r ′ 6 bp + q − 1/2c, andr ′ = −(kq + lp).
The eigenvalues at the intercrossings are (see equations (13) and (A.2)) :

λ
(1)
k (θ

p,q

r ′ ) = λ(2)l (θp,qr ′ ) = 4ω2
1 sin2 πr

p + q
r = l − k −

⌊
p + q − 1

2

⌋
6 r 6

⌊
p + q − 1

2

⌋
.

(A.3)

The corresponding eigenvectors are given by equation (12), with:

zk = w∗l = exp

[
2π i

r

p + q
]
. (A.4)

The eigenvalues ofFk,l are roots of the following second-order equation:

λ2− (TrFk,l)λ+ detFk,l = 0

TrFk,l = λ(1)k (θ)+ λ(2)l (θ)+ ξ(a1,1+ a2,2)

detFk,l = (λ(1)k (θ)+ ξa1,1)(λ
(2)
k (θ)+ ξa2,2)− ξ2|a1,2|2

(A.5)

where

a1,1 = (v(1)k (θ),Fp,q1 (θ)v
(1)
k (θ)) =

k1,2

m1

a2,2 = (v(2)l (θ),Fp,q1 (θ)v
(2)
l (θ)) =

p

q

k1,2

m2

a1,2 = a∗2,1 = (v(2)l (θ),Fp,q1 (θ)v
(1)
k (θ)) = −

k1,2

√
m1m2

Pp,q(z
∗
k )√

pq

(A.6)

andPp,q(z) obeys:

Pp1+p2,q1+q2(z) = Pp1,q1(z)+ zp1+q1Pp2,q2(z)
p1

q1
<
p2

q2

P1,1(z) = 1

P2,2(z) = 1+ z.
(A.7)

Therefore, the two roots of equation (A.5) are:

λ1,2(θ) = 1

2
[λ(1)k (θ)+ λ(2)l (θ)] +

1

2
k1,2

(
1

m1
+ p
q

1

m2

)

±1

2

√[
λ
(1)
k (θ)− λ(2)l (θ)+ k1,2

(
1

m1
− p
q

1

m2

)]2

+ 4
(k1,2)2

m1m2

P 2
p,q

pq
. (A.8)
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The extremum condition for the two above eigenvalues branches dλ1,2(θ)/dθ = 0 leads to:

[λ(1)k (θ)− λ(2)l (θ)]± = k1,2

−
(

1

m1
− p
q

1

m2

)
± 1√

m1m2

|Pp,q |√
pq

| dλ
(1)
k

dθ +
dλ(2)l
dθ |√

− dλ(1)k
dθ

dλ(2)l
dθ

 (A.9)

and the positions of the two extrema are, in first order ofξ :

θ± = θp,qr +
[λ(1)k (θ)− λ(2)l (θ)]±

dλ(1)k
dθ −

dλ(2)l
dθ

. (A.10)

The values of the derivatives at the intercrossing satisfy:
dλ(1)k
dθ

dλ(2)l
dθ

= − q
p
. (A.11)

Introducing (A.9)–(A.11) into (A.8) allows us to find the extreme eigenvalues in the
two branches and the gap, as the difference between them:

δλrp,q =
k1,2

√
m1m2

2

p + q
p2+ q2

pq
Pp,q

[
exp

2πr i

p + q
]
. (A.12)

Appendix B. Acoustic phason for the differentiable modulation function

Here we adapt for the double chain the usual elementary argument employed for the simple
Frenkel–Kontorowa model (see Coppersmith and Fisher 1983).

From equation (1) the static equilibrium positions satisfy:

−V ′(1,1)n,n+1(xo
(1)
n+1− xo(1)n )+ V ′(1,1)n−1,n(xo

(1)
n − xo(1)n−1)+

∑
m

V ′(1,2)n,m (xo
(1)
n − xo(2)m ) = 0

−V ′(2,2)m,m+1(xo
(2)
m+1− xo(2)m )+ V ′(2,2)m−1,m(xo

(2)
m − xo(2)m−1)−

∑
n

V ′(1,2)n,m (xo
(1)
n − xo(2)m ) = 0.

(B.1)

Introducing the modulated equilibrium positions (35) into (B.1) and then deriving the
first equation with respect to11 and the second equation with respect to12 one obtains

k(1)
a

m1
{2g′(1)(na +11)− g′(1)[(n+ 1)a +11] − g′(1)[(n− 1)a +11]}

+
(∑

m

k(1,2)n,m

)
a

m1
[g′(1)(na +11)+ 1]

−
∑
m

k(1,2)n,m

b

m2
[g′(2)(mb +12)− 1] = 0

k(2)
b

m2
{2g′(2)(mb +12)− g′(2)[(m+ 1)b +12] − g′(2)[(m− 1)b +12]}

+
(∑

n

k(1,2)n,m

)
b

m2
[g′(2)(mb +12)− 1]

−
∑
n

k(1,2)n,m

a

m1
[g′(1)(na +11)+ 1] = 0

(B.2)

which means that displacements (36) belong to the kernel ofF (they are zero-energy modes):

F

(
a√
m1

[1+ g′(1)(na +11)],
b√
m2

[−1+ g′(2)(mb +12)]

)
= 0. (B.3)



4214 O Radulescu and T Janssen

References

Aubry S 1982 Exact models with a complete Devil’s staircaseJ. Phys. C: Solid State Phys.16 2497–508
Axe J D and Bak P 1982 Long-wavelength excitations in incommensurate intergrowth compounds with application

to Hg3−δAsF6 Phys. Rev.B 26 4963–73
Coppersmith S N and Fisher D S 1983 Pinning transition of the discrete sine–Gordon equationPhys. Rev.B 28

2566–81
Emery V J and Axe J D 1978 One-dimensional fluctuations and the chain-ordering transformation in Hg3−δAsF6

Phys. Rev. Lett.40 1507–10
Finger W and Rice T M 1983 Long-wavelength phonons in incommensurate systemsPhys. Rev.B 28 340–58
Hua L K 1982Introduction to Number Theory(New York: Springer) pp 125–9
Ishii T 1983 Frenkel-Kontorowa model with deformable substrate: ground state and excitation spectrumJ. Phys.

Soc. Japan52 168–78
Katz A and Duneau M 1986J. Physique47 181–96
de Lange C and Janssen T 1981 Incommensurability and recursivity: Lattice dynamics of modulated crystalsJ.

Phys. C: Solid State Phys.14 5269–92
van Mouche P 1988 Sur les régions interdites du spectre de l’opérateur ṕeriodique et discret de MathieuPhD
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